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Phase 1 Goal: Demonstrate 
the proof-of-concept with 
a prototype 

Task 5 Motivation
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Vision: Enable a Virtual Learning 
Environment (VLE) for exploring 
and testing strategies to 
optimize reservoir development, 
management & monitoring prior 
to field activities

Can we rapidly develop experience among CCS stakeholders to facilitate rapid & safe deployment 
of large-scale geologic CO2 storage?

Interactively gain 
intuitive understanding 
of CO2 storage site 
behavior by: 
.
.

Manipulating inputs &
.
.
.
Exploring Outputs

3d Reservoir Permeability



How can Task 5 help CCS decision-makers
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Decision Maker Decision to Be Made Current Approach to Decision
How might SMART change this decision?
And, how would this new approach improve 
the decision?

Regulator—State, Federal in 
Charge of Permitting

Will the proposed AOR and 
monitoring plan be sufficient?

Assess AOR and monitoring 
requirements based on information 
provided in permit application

Regulators can use VLE to gain and improve  
understanding of AOR and effective monitoring 
through exploring multiple, relevant scenarios in 
significantly shorter time
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Engineer—Storage 
Operation

How should the field be developed 
relative to injection wells? Numerical reservoir simulations 

coupled with field injection tests

Engineer—Storage 
Operation

How should the field and 
infrastructure be developed 
relative to brine extraction?
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Engineer—Storage 
Operation

When/where/how should I 
monitor to ensure there is no 
leak?

Monitoring observations during site-
operations coupled with predictions of 
post-injection site behavior with 
reservoir models (validated)

Engineers can use VLE to efficiently test effectiveness 
of different post-injection monitoring strategies 
(when, where, what) prior to site operations in 
significantly shorter time

Numerical reservoir simulations 
coupled with field production tests

Engineers can use VLE to rapidly test different 
strategies for optimal reservoir management by 
exploring multiple, relevant scenarios



Fast 
Predictive 

Model

Fast 
Predictive 

Model

Fast 
Predictive 

Model

Interactive virtual learning platforms need fast, predictive models 
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Fast, predictive models can be developed using novel machine-learning based methods 



Our Approach
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Numerical reservoir simulation of

active reservoir management:
• 30 years of injection/extraction and up to

50 years of post-injection CS performance

• Fixed number of injection/extraction wells

Multiple depositional environments / res.

Sites

Heterogeneous porosity/permeability

Variable cumulative CO2 injection (up to

50 million tons)

Variable injection allocation among

injectors

Geological 
uncertainty

Operational 
uncertainty

Our approach uses synthetic training data to develop machine learning based 
models

Use of high-fidelity reservoir simulators

provide the needed science-basis



We have explored multiple machine learning approaches

• Approaches that can effectively capture 
time & space-dependent evolution of 
reservoir response: 
◦ Extensive literature search to identify appropriate 

approaches

• Applicability of approaches tested using 2D 
and 3D small-scale test problems of varying 
complexities:
◦ Over 16 different models developed by team members

• Workflow for field-scale ML model dev was 
defined
◦ A Browser-based test suite to facilitate ML model inter-

comparison
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A prototype interactive platform has been developed with ML-based fast, 
predictive models 
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3d Reservoir Permeability

Parameterized

ML Model

Select Reservoir,

Forecasting Model,

and Input Parameters

  

Obtain

Model

Predictions

Pressure

Production

View

Results

Saturation

• Identified requirements for 
interactive platform:

◦ Inputs

◦ Predictions

◦ Performance

◦ Analysis capabilities

• Proof-of-concept of the 
platform was successfully tested 
with ML-based model for 3D 
small-scale test problem



Task Management
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Sub-task Description Sub-task Lead

5.2.1 Develop Specifications for Platform Hongkyu Yoon (SNL)

5.2.2 Identify Candidate Phase 2 Reservoirs Tom McGuire (EERC)

5.2.3 Define ML Model Training Workflows Alex Sun (UT-BEG)

5.2.4 Synthetic Data Generation Luis Ayala (PSU)

5.2.5 ML Forecasting Model Development Seyyed Hosseini (UT-BEG)

5.2.6 Develop Alpha Version of Platform Alex Hanna (PNNL)
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Field Sites

Criteria for reservoir models selection

1. Capability to store up to 50 million tons of CO2 over

50 years (injection + post injection periods)

2

3

1

2. Variety of geological depositional settings 

3. Public availability and accessibility of multiple geological 

realizations to capture uncertainty

4. Preference to models created in previous  DOE funded 

projects 

Selected reservoir Models

❶ High Island 24L (offshore Gulf of Mexico) – Fluvial 

depositional environment

❷ CarbonSAFE Utah – Eolian depositional environment 

❸ SACROC – Carbonate Reef depositional environment



SACROC Example



SACROC Northern Platform
The Scurry Area Canyon Reef Operators Committee Unit

• CO2-EOR since 1972

• For Task 5 purpose target reservoir approximated as a saline aquifer
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Reservoir simulations
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• Reservoir model originally developed by Southwest Regional 
Partnership
o CMG-GEM 
o 13600 cells (34 ×16 ×25)

• Scoping simulations performed to determine optimal net CO2

storage
• Ensure industrial scale storage
• Optimal net capacity achieved with 3 injectors and 2 

producers

• Iterative approach used to ensure that the underlying physics 
was honored 
o Bottom-hole-pressure response at the injectors
o Iterated with boundary conditions and local-grid-

refinement
• Average simulation run time: ~ 4 hours/run



Multiple property realizations to account for geological uncertainties
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3 porosity-permeability realizations: P10, P50, P90

Porosity

Permeability

P10 P50 P90



Simulation case matrix
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Variables:

• Injection 

amount 

• Injection 

allocation 

among wells

• k and phi 

values

81 training 

cases

9 testing cases



Example results – Pressure and saturation distributions at the end of injection in 
one of the model layers for one simulation run
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3 porosity-permeability realizations: P10, P50, P90

Pressure

Saturation

P10 P50 P90



Machine learning based model development

• Results of reservoir simulations 
converted in formats appropriate for 
ML
◦ Numpy format

◦ New conversion script developed

◦ Converted output size - ~ 0.4 GB/run

• Input data for ML-models included
◦ Space-dependent permeability, porosity

◦ Locations & time-dependent injection 
rates for 3 injectors

◦ Time & space dependent pressure & 
saturation

◦ Locations & time-dependent production 
rates for 2 producers   
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ML-Approach Team

Fourier Neural Operator (FNO) LANL

Autoencoder + Multilayer Perceptron 
(Pressure & Saturation)

NETL-SSAE
Autoencoder + Long Short Term Memory 
(Water Production)

Long Short Term Memory NETL-GES

Pix2Pix PNNL

CNN-LSTM-DNN (Pressure & Saturation)
SNL

CNN-LSTM (Water Production)

AU-Net UT-BEG

Six different ML approaches were applied



ML-based models – pressure predictions for test cases
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FNO AE+MLP LSTM

Pix2Pix CNN-LSTM-DNN AU-Net



ML-based models – saturation predictions for test cases
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FNO AE+MLP LSTM

Pix2Pix CNN-LSTM-DNN AU-Net



ML-based models – production rate predictions for test cases
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FNO AE+LSTM LSTM

Pix2Pix CNN-LSTM AU-Net



Combined Results



We have successfully developed fast, predictive models for three reservoirs
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Reservoir 
Model 

Institution 
Model 

Reported 

Best RMSE Achieved 

Forecast 
Time 
(secs) 

~Speed-up 
relative to 

physics-based 
simulator 

Pressure (psi) Saturation 

Water 
Production 

Rate 
(bbl/day) 

Gulf of 
Mexico 

UTBEG CNN/MLP 2.06 0.0053 13.86 5 2000X 

Battelle GNN (multi) 296.62 0.0444 N/A 204 50X 

PSU 
MLP 0.16 0.0068 6.5 165 60X 

LSTM 0.12 0.0429 9.09 190 50X 

CARBONSAFE 

NETL LSTM 26.70 0.0064 36.86 1.15 5000X 

UU MLP 20.50 0.0350 20.8 800 10X 

LBNL Model1 36.17 0.0105 N/A 131 50X 

SNL CNN/LSTM 2.655 0.0006 3.59 93 60X 

SACROC 

LANL FNO 4.94 0.0296 99.5 9.54 250X 

NETL-SSAE 
MLP 22.77 0.0350 90 1.59 1500X 

LSTM 34.50 0.0390 52.39 1.24 2000X 

NETL-GES LSTM 22.4 0.0280 121.83 0.48 5000X 

PNNL GAN 12.14 0.0295 221.59 0.98 2500X 

SNL CNN/LSTM 11.17 0.0358 245.24 2.17 400X 

UTBEG U-NET 78.76 0.1000 628.98 6.9 400X 

 

• 250 reservoir simulation runs for 3 
reservoirs:

◦ CarbonSAFE: 40 runs

◦ SACROC: 90 runs

◦ Gulf of Mexico: 120 runs

• Multiple teams applied different 
machine-learning approaches

◦ CarbonSAFE – 4 models

◦ SACROC – 7 models

◦ Gulf of Mexico – 4 models

• ML-based models have high 
accuracy and good speed-up 
(10x – 5000x) compared to 
physics-based simulators 



Future Work



Future work in Phase I
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• Perform detailed comparison of 
ML-based models

◦ Test speed-ups using common 
computational platform

• Complete incorporation of ML-
based models in the VLE and 
demonstrate its utility

• Assess applicability of ML 
approaches for Phase II



Questions?
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Thank you!

{insert email address}
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